This article actually touches up on some advanced topics of C#, and some things that you may not have ever come across. MSDN has this to say about threads:
An operating-system ThreadId has no fixed relationship to a managed thread, because an unmanaged host can control the relationship between managed and unmanaged threads. Specifically, a sophisticated host can use the CLR Hosting API to schedule many managed threads against the same operating system thread, or to move a managed thread between different operating system threads.
What this is really trying to explain is thread affinity, and that you are not guaranteed to have a native thread map 1-to-1 to a managed thread depending on the CLR (Common Language Runtime) that is hosting your code. This is important to know when you P/Invoke into native functions that require calling back into your C# code after a period of time (such as NotifyServiceStatusChange). We want to maintain that 1-to-1 relationship using Thread.BeginThreadAffinity() because the marshaling layer needs to have a valid callback reference at all times.
Here is the code that you can use to P/Invoke NotifyServiceStatusChange in C# in order to wait for a service to stop:
using System;
using System.Runtime.InteropServices;
using System.Threading;
class ServiceAssistant
{
[System.Runtime.InteropServices.StructLayoutAttribute(System.Runtime.InteropServices.LayoutKind.Sequential)]
public class SERVICE_NOTIFY
{
public uint dwVersion;
public IntPtr pfnNotifyCallback;
public IntPtr pContext;
public uint dwNotificationStatus;
public SERVICE_STATUS_PROCESS ServiceStatus;
public uint dwNotificationTriggered;
public IntPtr pszServiceNames;
};
[System.Runtime.InteropServices.StructLayoutAttribute(System.Runtime.InteropServices.LayoutKind.Sequential)]
public struct SERVICE_STATUS_PROCESS
{
public uint dwServiceType;
public uint dwCurrentState;
public uint dwControlsAccepted;
public uint dwWin32ExitCode;
public uint dwServiceSpecificExitCode;
public uint dwCheckPoint;
public uint dwWaitHint;
public uint dwProcessId;
public uint dwServiceFlags;
};
[DllImport("advapi32.dll")]
static extern IntPtr OpenService(IntPtr hSCManager, string lpServiceName, uint dwDesiredAccess);
[DllImport("advapi32.dll")]
static extern IntPtr OpenSCManager(string machineName, string databaseName, uint dwAccess);
[DllImport("advapi32.dll")]
static extern uint NotifyServiceStatusChange(IntPtr hService, uint dwNotifyMask, IntPtr pNotifyBuffer);
[DllImport("kernel32.dll")]
static extern uint SleepEx(uint dwMilliseconds, bool bAlertable);
[DllImport("advapi32.dll")]
static extern bool CloseServiceHandle(IntPtr hSCObject);
delegate void StatusChangedCallbackDelegate(IntPtr parameter);
/// <summary>
/// Block until a service stops, is killed, or is found to be already dead.
/// </summary>
/// <param name="serviceName">The name of the service you would like to wait for.</param>
/// <param name="timeout">An amount of time you would like to wait for. uint.MaxValue is the default, and it will force this thread to wait indefinitely.</param>
public static void WaitForServiceToStop(string serviceName, uint timeout = uint.MaxValue)
{
// Ensure that this thread's identity is mapped, 1-to-1, with a native OS thread.
Thread.BeginThreadAffinity();
GCHandle notifyHandle = default(GCHandle);
StatusChangedCallbackDelegate changeDelegate = ReceivedStatusChangedEvent;
IntPtr hSCM = IntPtr.Zero;
IntPtr hService = IntPtr.Zero;
try
{
hSCM = OpenSCManager(null, null, (uint)0xF003F);
if (hSCM != IntPtr.Zero)
{
hService = OpenService(hSCM, serviceName, (uint)0xF003F);
if (hService != IntPtr.Zero)
{
SERVICE_NOTIFY notify = new SERVICE_NOTIFY();
notify.dwVersion = 2;
notify.pfnNotifyCallback = Marshal.GetFunctionPointerForDelegate(changeDelegate);
notify.ServiceStatus = new SERVICE_STATUS_PROCESS();
notifyHandle = GCHandle.Alloc(notify, GCHandleType.Pinned);
IntPtr pinnedNotifyStructure = notifyHandle.AddrOfPinnedObject();
NotifyServiceStatusChange(hService, (uint)0x00000001, pinnedNotifyStructure);
SleepEx(timeout, true);
}
}
}
finally
{
// Clean up at the end of our operation, or if this thread is aborted.
if (hService != IntPtr.Zero)
{
CloseServiceHandle(hService);
}
if (hSCM != IntPtr.Zero)
{
CloseServiceHandle(hSCM);
}
// Keep our callback method around until it is called (until this line of code).
GC.KeepAlive(changeDelegate);
if (notifyHandle != default(GCHandle))
{
notifyHandle.Free();
}
Thread.EndThreadAffinity();
}
}
static void ReceivedStatusChangedEvent(IntPtr parameter)
{
// Do nothing.
}
}
Its so simple, that it can just be called as follows:
ServiceAssistant.WaitForServiceToStop("YourWindowsServiceName");
Note that this is significantly different from the WaitForStatus method that is available to you out of the box in C#, because the WaitForStatus method polls every 250ms between status checks according to the remarks, whereas NotifyServiceStatusChange is event-driven and subscribes to that particular event (so its less overhead in terms of CPU usage).